Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters










Publication year range
1.
Food Res Int ; 173(Pt 1): 113315, 2023 11.
Article in English | MEDLINE | ID: mdl-37803629

ABSTRACT

Industrial-scale production of recombinant proteins for food products may become economically feasible but correct post-translational modification of proteins by microbial expression systems remains a challenge. For efficient production of hybrid products from bovine casein and recombinant casein, it is therefore of interest to evaluate the necessity of casein post-translational phosphorylation for the preparation of hybrid casein micelles and study their rennet-induced coagulation. Our results show that dephosphorylated casein was hardly incorporated into artificial casein micelles but was capable of stabilising calcium phosphate nanoclusters with an increased size through adsorption on their surface. Thereby, dephosphorylated casein formed larger colloidal particles with a decreased hydration. Furthermore, the presence of increasing amounts of dephosphorylated casein resulted in increasingly poor rennet coagulation behaviour, where dephosphorylated casein disrupted the formation of a coherent gel network by native casein. These results emphasise that post-translational phosphorylation of casein is crucial for their assembly into micelles and thereby for the production of dairy products for which the casein micelle structure is a prerequisite, such as many cheese varieties and yoghurt. Therefore, phosphorylation of future recombinant casein is essential to allow its use in the production of animal-free dairy products.


Subject(s)
Cheese , Micelles , Animals , Cattle , Caseins/chemistry , Phosphorylation , Milk/chemistry
2.
Front Pharmacol ; 14: 1141785, 2023.
Article in English | MEDLINE | ID: mdl-37533629

ABSTRACT

The opportunistic yeast Candida albicans is the most common cause of candidiasis. With only four classes of antifungal drugs on the market, resistance is becoming a problem in the treatment of fungal infections, especially in immunocompromised patients. The development of novel antifungal drugs with different modes of action is urgent. In 2016, we developed a groundbreaking new medium-throughput method to distinguish the effects of antibacterial agents. Using small-angle X-ray scattering for biological samples (BioSAXS), it is now possible to screen hundreds of new antibacterial compounds and select those with the highest probability for a novel mode of action. However, yeast (eukaryotic) cells are highly structured compared to bacteria. The fundamental question to answer was if the ultrastructural changes induced by the action of an antifungal drug can be detected even when most structures in the cell stay unchanged. In this exploratory work, BioSAXS was used to measure the ultrastructural changes of C. albicans that were directly or indirectly induced by antifungal compounds. For this, the well-characterized antifungal drug Flucytosine was used. BioSAXS measurements were performed on the synchrotron P12 BioSAXS beamline, EMBL (DESY, Hamburg) on treated and untreated yeast C. albicans. BioSAXS curves were analysed using principal component analysis (PCA). The PCA showed that Flucytosine-treated and untreated yeast were separated. Based on that success further measurements were performed on five antifungal peptides {1. Cecropin A-melittin hybrid [CA (1-7) M (2-9)], KWKLFKKIGAVLKVL; 2. Lasioglossin LL-III, VNWKKILGKIIKVVK; 3. Mastoparan M, INLKAIAALAKKLL; 4. Bmkn2, FIGAIARLLSKIFGKR; and 5. optP7, KRRVRWIIW}. The ultrastructural changes of C. albicans indicate that the peptides may have different modes of action compared to Flucytosine as well as to each other, except for the Cecropin A-melittin hybrid [CA (1-7) M (2-9)] and optP7, showing very similar effects on C. albicans. This very first study demonstrates that BioSAXS shows promise to be used for antifungal drug development. However, this first study has limitations and further experiments are necessary to establish this application.

3.
Food Chem ; 426: 136496, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37331143

ABSTRACT

Non-covalent interactions of phenolics with proteins cannot always be readily identified, often leading to contradictory results described in the literature. This results in uncertainties as to what extent phenolics can be added to protein solutions (for example for bioactivity studies) without affecting the protein structure. Here, we clarify which tea phenolics (epigallocatechin gallate (EGCG), epicatechin and gallic acid) interact with the whey protein ß-lactoglobulin by combining various state-of-the-art-methods. STD-NMR revealed that all rings of EGCG can interact with native ß-lactoglobulin, indicating multidentate binding, as confirmed by the small angle X-ray scattering experiments. For epicatechin, unspecific interactions were found only at higher protein:epicatechin molar ratios and only with 1H NMR shift perturbation and FTIR. For gallic acid, none of the methods found evidence for an interaction with ß-lactoglobulin. Thus, gallic acid and epicatechin can be added to native BLG, for example as antioxidants without causing modification within wide concentration ranges.


Subject(s)
Catechin , Catechin/chemistry , Phenol , Tea/chemistry , Lactoglobulins/chemistry , Phenols/analysis , Antioxidants/chemistry , Gallic Acid
4.
J Mech Behav Biomed Mater ; 144: 105939, 2023 08.
Article in English | MEDLINE | ID: mdl-37348169

ABSTRACT

We propose a computational framework to study the effect of corrosion on the mechanical strength of magnesium (Mg) samples. Our work is motivated by the need to predict the residual strength of biomedical Mg implants after a given period of degradation in a physiological environment. To model corrosion, a mass-diffusion type model is used that accounts for localised corrosion using Weibull statistics. The overall mass loss is prescribed (e.g., based on experimental data). The mechanical behaviour of the Mg samples is modeled by a state-of-the-art Cazacu-Plunkett-Barlat plasticity model with a coupled damage model. This allowed us to study how Mg degradation in immersed samples reduces the mechanical strength over time. We performed a large number of in vitro corrosion experiments and mechanical tests to validate our computational framework. Our framework could predict both the experimentally observed loss of mechanical strength and the ductility due to corrosion for both tension and compression tests.


Subject(s)
Gadolinium , Magnesium , Materials Testing , Corrosion , Prostheses and Implants , Alloys , Absorbable Implants
5.
Int J Mol Sci ; 23(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36430405

ABSTRACT

Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.


Subject(s)
Amyloid , Muramidase , Amyloid/metabolism , Muramidase/chemistry , Ferritins , Iron/metabolism
6.
Molecules ; 27(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36296512

ABSTRACT

Nicotine hydrochloride (NCT) has a good control effect on hemiptera pests, but its poor interfacial behavior on the hydrophobic leaf leads to few practical applications. In this study, a vesicle solution by the eco-friendly surfactant, sodium diisooctyl succinate sulfonate (AOT), was prepared as the pesticide carrier for NCT. The physical chemical properties of NCT-loaded AOT vesicles (NCT/AOT) were investigated by techniques such as dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). The results showed that the pesticide loading and encapsulation efficiency of NCT/AOT were 10.6% and 94.8%, respectively. The size of NCT/AOT vesicle was about 177 nm. SAXS and surface tension results indicated that the structure of the NCT/AOT vesicle still existed with low surface tension even after being diluted 200 times. The contact angle of NCT/AOT was always below 30°, which means it could wet the surface of the cabbage leaf well. Consequently, NCT/AOT vesicles could effectively reduce the bounce of pesticide droplets. In vitro release experiments showed that NCT/AOT vesicles had sustained release properties; 60% of NCT in NCT/AOT released after 24 h, and 80% after 48 h. Insecticidal activity assays against aphids revealed that AOT vesicles exhibited insecticidal activity and could have a synergistic insecticidal effect with NCT after the loading of NCT. Thus, the NCT/AOT vesicles significantly improved the insecticidal efficiency of NCT, which has potential application in agricultural production activities.


Subject(s)
Insecticides , Pulmonary Surfactants , Delayed-Action Preparations/chemistry , Insecticides/pharmacology , Nicotine/pharmacology , Scattering, Small Angle , Sodium , Succinates/chemistry , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , X-Ray Diffraction
7.
Biochim Biophys Acta Biomembr ; 1864(10): 184004, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35841926

ABSTRACT

Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.


Subject(s)
Diazomethane , Membrane Lipids , Azides , Cross-Linking Reagents/chemistry , Diazomethane/chemistry , Mass Spectrometry/methods , Peptides , Scattering, Small Angle , X-Ray Diffraction
8.
Front Pharmacol ; 12: 769739, 2021.
Article in English | MEDLINE | ID: mdl-34966279

ABSTRACT

Antimicrobial peptides (AMPs) are a promising class of compounds being developed against multi-drug resistant bacteria. Hybridization has been reported to increase antimicrobial activity. Here, two proline-rich peptides (consP1: VRKPPYLPRPRPRPL-CONH2 and Bac5-v291: RWRRPIRRRPIRPPFWR-CONH2) were combined with two arginine-isoleucine-rich peptides (optP1: KIILRIRWR-CONH2 and optP7: KRRVRWIIW-CONH2). Proline-rich antimicrobial peptides (PrAMPs) are known to inhibit the bacterial ribosome, shown also for Bac5-v291, whereas it is hypothesized a "dirty drug" model for the arginine-isoleucine-rich peptides. That hypothesis was underpinned by transmission electron microscopy and biological small-angle X-ray scattering (BioSAXS). The strength of BioSAXS is the power to detect ultrastructural changes in millions of cells in a short time (seconds) in a high-throughput manner. This information can be used to classify antimicrobial compounds into groups according to the ultrastructural changes they inflict on bacteria and how the bacteria react towards that assault. Based on previous studies, this correlates very well with different modes of action. Due to the novelty of this approach direct identification of the target of the antimicrobial compound is not yet fully established, more research is needed. More research is needed to address this limitation. The hybrid peptides showed a stronger antimicrobial activity compared to the proline-rich peptides, except when compared to Bac5-v291 against E. coli. The increase in activity compared to the arginine-isoleucine-rich peptides was up to 6-fold, however, it was not a general increase but was dependent on the combination of peptides and bacteria. BioSAXS experiments revealed that proline-rich peptides and arginine-isoleucine-rich peptides induce very different ultrastructural changes in E. coli, whereas a hybrid peptide (hyP7B5GK) shows changes, different to both parental peptides and the untreated control. These different ultrastructural changes indicated that the mode of action of the parental peptides might be different from each other as well as from the hybrid peptide hyP7B5GK. All peptides showed very low haemolytic activity, some of them showed a 100-fold or larger therapeutic window, demonstrating the potential for further drug development.

9.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834056

ABSTRACT

Ferritin, a spherically shaped protein complex, is responsible for iron storage in bacteria, plants, animals, and humans. Various ferritin iron core compositions in organisms are associated with specific living requirements, health state, and different biochemical roles of ferritin isomers. Magnetoferritin, a synthetic ferritin derivative, serves as an artificial model system of unusual iron phase structures found in humans. We present the results of a complex structural study of magnetoferritins prepared by controlled in vitro synthesis. Using various complementary methods, it was observed that manipulation of the synthesis technology can improve the physicochemical parameters of the system, which is useful in applications. Thus, a higher synthesis temperature leads to an increase in magnetization due to the formation of the magnetite phase. An increase in the iron loading factor has a more pronounced impact on the protein shell structure in comparison with the pH of the aqueous medium. On the other hand, a higher loading factor at physiological temperature enhances the formation of an amorphous phase instead of magnetite crystallization. It was confirmed that the iron-overloading effect alone (observed during pathological events) cannot contribute to the formation of magnetite.

10.
Chemistry ; 27(59): 14586-14593, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34406694

ABSTRACT

Although incorporation of photo-activatable lipids into membranes potentially opens up novel avenues for investigating interactions with proteins, the question of whether diazirine-modified lipids are suitable for such studies, remains under debate. Focusing on the potential for studying lipid/peptide interactions by cross-linking mass spectrometry (XL-MS), we developed a diazirine-modified lipid (DiazPC), and examined its behaviour in membranes incorporating the model α-helical peptide LAVA20. We observed an unexpected backfolding of the diazirine-containing stearoyl chain of the lipid. This surprising behaviour challenges the potential application of DiazPC for future XL-MS studies of peptide and protein/lipid interactions. The observations made for DiazPC most likely represent a general phenomenon for any type of membrane lipids with a polar moiety incorporated into the alkyl chain. Our finding is therefore of importance for future protein/lipid interaction studies relying on modified lipid probes.


Subject(s)
Diazomethane , Membrane Lipids , Cross-Linking Reagents , Mass Spectrometry , Peptides
11.
ACS Appl Mater Interfaces ; 13(30): 35281-35293, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34309373

ABSTRACT

Targeted therapies of melanoma are of urgent need considering the resistance of this aggressive type of cancer to chemotherapeutics. The voltage-dependent anion channel 1 (VDAC1)-hexokinase-II (HK-II) complex is an emerging target for novel anticancer therapies based on induced mitochondria-mediated apoptosis. The low cell membrane permeability of the anticancer 12-mer peptide N-Ter (RDVFTKGYGFGL) derived from the N-terminal fragment of the VDAC1 protein impedes the intracellular targeting. Here, novel multiblock VDAC1-derived cationic amphiphilic peptides (referred to as Pal-N-Ter-TAT, pFL-N-Ter-TAT, and Pal-pFL-N-Ter-TAT) are designed with a self-assembly propensity and cell-penetrating properties. The created multiblock amphiphilic peptides of partial α-helical conformations form nanoparticles of ellipsoid-like shapes and are characterized by enhanced cellular uptake. The amphiphilic peptides can target mitochondria and dissociate the VDAC1-HK-II complex at the outer mitochondrial membrane, which result in mitochondria-mediated apoptosis. The latter is associated with decrease of the mitochondrial membrane potential, cytochrome c release, and changes of the expression levels of the apoptotic proteins in A375 melanoma cells. Importantly, the mitochondrial VDAC1-derived amphiphilic peptides have a comparable IC50 value for melanoma cells to a small-molecule drug, sorafenib, which has been previously used in clinical trials for melanoma. These results demonstrate the potential of the designed peptide constructs for efficient melanoma inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Hexokinase/metabolism , Peptides/pharmacology , Surface-Active Agents/pharmacology , Voltage-Dependent Anion Channel 1/metabolism , Amino Acid Sequence , Apoptosis/drug effects , Cell Line, Tumor , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondrial Membranes/drug effects
12.
ACS Appl Mater Interfaces ; 13(20): 23627-23637, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33988970

ABSTRACT

At present, both native and immobilized nanoparticles are of great importance in many areas of science and technology. In this paper, we have studied magnetic iron oxide nanoparticles and their aggregates bound on woven cotton textiles employing two simple modification procedures. One modification was based on the treatment of textiles with perchloric-acid-stabilized magnetic fluid diluted with methanol followed by drying. The second procedure was based on the microwave-assisted conversion of ferrous sulfate at high pH followed by drying. The structure and functional properties of these modified textiles were analyzed in detail. Scanning electron microscopy of native and modified textiles clearly showed the presence of iron oxide nanoparticles on the surface of the modified cotton fibers. All of the modified textile materials exhibited light to dark brown color depending on the amount of the bound iron oxide particles. Magnetic measurements showed that the saturation magnetization values reflect the amount of magnetic nanoparticles present in the modified textiles. Small-angle X-ray and neutron scattering measurements were conducted for the detailed structural characterization at the nanoscale of both the native and magnetically modified textiles, and different structural organization of nanoparticles in the two kinds of textile samples were concluded. The textile-bound iron oxide particles exhibited peroxidase-like activity when the N,N-diethyl-p-phenylenediamine sulfate salt was used as a substrate; this nanozyme activity enabled rapid decolorization of crystal violet in the presence of hydrogen peroxide. The deposition of a sufficient amount of iron oxide particles on textiles enabled their simple magnetic separation from large volumes of solutions; if necessary, the magnetic response of the modified textiles can be simply increased by incorporation of a piece of magnetic iron wire. The simplicity of the immobilized nanozyme preparation and the low cost of all the precursors enable its widespread application, such as decolorization and degradation of selected organic dyes and other important pollutants. Other types of textile-bound nanozymes can be prepared and used as low-cost catalysts for a variety of applications.


Subject(s)
Cotton Fiber , Magnetite Nanoparticles/chemistry , Nanocomposites/chemistry , Peroxidases , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Peroxidases/chemistry , Peroxidases/metabolism
13.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867196

ABSTRACT

Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Calcium/chemistry , Hyaluronic Acid/chemistry , Friction , Hydrogen Bonding , Lubrication , Molecular Weight , Surface Properties
14.
Front Pharmacol ; 10: 1127, 2019.
Article in English | MEDLINE | ID: mdl-31616307

ABSTRACT

Two highly active short broad-spectrum AMPs (14D and 69D) with unknown mode of action have been investigated in regards to their effect against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria methicillin-resistant Staphylococcus aureus (MRSA). Minimal inhibitory concentration (MIC) measurements using a cell density of 108 cfu/ml resulted in values between 16 and 32 µg/ml. Time-kill experiments using 108 cfu/ml revealed complete killing, except for 69D in combination with MRSA, where bacterial load was reduced a million times. Small-angle X-ray scattering of biological samples (BioSAXS) at 108 cfu/ml was applied to investigate the ultrastructural changes in E. coli and MRSA in response to these two broad-spectrum AMPs. In addition, electron microscopy (EM) was performed to visualize the treated and non-treated bacteria. As expected, the scattering curves generated using BioSAXS show the ultrastructure of the Gram-positive and Gram-negative bacteria to be very different (BioSAXS is not susceptible to the outer shape). After treatment with either peptide, the scattering curves of E. coli and MRSA cells are much more alike. Whereas in EM, it is notoriously difficult to observe changes for spherical Gram-positives; the BioSAXS results are superior and reveal strongly similar effects for both peptides induced in Gram-positive as well as Gram-negative bacteria. Given the high-throughput possibility and robust statistics, BioSAXS can support and speed up mode of action research in AMPs and other antimicrobial compounds, making a contribution toward the development of urgently needed drugs against resistant bacteria.

15.
Langmuir ; 35(45): 14532-14542, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31635451

ABSTRACT

We report pH-responsive liquid crystalline lipid nanoparticles, which are dual-loaded by Brucea javanica oil (BJO) and doxorubicin hydrochloride (DOX) and display a pH-induced inverted hexagonal (pH = 7.4) to cubic (pH = 6.8) to emulsified microemulsion (pH = 5.3) phase transition with a therapeutic application in cancer inhibition. BJO is a traditional herbal medicine that strongly inhibits the proliferation and metastasis of various cancers. Doxorubicin is an antitumor drug, which prevents DNA replication and hampers protein synthesis through intercalation between the base pairs of the DNA helices. Its dose-dependent cardiotoxicity imposes the need for safe delivery carriers. Here, pH-induced changes in the structural and interfacial properties of designed multicomponent drug delivery (monoolein-oleic acid-BJO-DOX) systems are determined by synchrotron small-angle X-ray scattering and the Langmuir film balance technique. The nanocarrier assemblies display good physical stability in the studied pH range and adequate particle sizes and ζ-potentials. Their interaction with model lipid membrane interfaces is enhanced under acidic pH conditions, which mimic the microenvironment around tumor cells. In vitro cytotoxicity and apoptosis studies with BJO-DOX dual-loaded pH-switchable liquid crystalline nanoparticles are performed on the human breast cancer Michigan Cancer Foundation-7 (MCF-7) cell line and MCF-7 cells with doxorubicin resistance (MCF-7/DOX), respectively. The obtained pH-sensitive nanomedicines exhibit enhanced antitumor efficacy. The performed preliminary studies suggest a potential reversal of the resistance of the MCF-7/DOX cells to DOX. These results highlight the necessity for further understanding the link between the established pH-dependent drug release profiles of the nanocarriers and the role of their pH-switchable inverted hexagonal, bicontinuous cubic, and emulsified microemulsion inner organizations for therapeutic outcomes.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Brucea/chemistry , Doxorubicin/chemistry , Drug Delivery Systems , Lipids/chemistry , Nanoparticles/chemistry , Plant Oils/chemistry , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA Replication/drug effects , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Screening Assays, Antitumor , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Particle Size , Seeds/chemistry , Surface Properties
16.
Soft Matter ; 15(36): 7295-7304, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31483431

ABSTRACT

The molecular mechanisms responsible for outstanding lubrication of natural systems, like articular joints, have been the focus of scientific research for several decades. One essential aspect is the lubrication under pressure, where it is important to understand how the lubricating entities adapt under dynamic working conditions in order to fulfill their function. We made a structural investigation of a model system consisting of two of the molecules present at the cartilage interface, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and hyaluronan, at high hydrostatic pressure. Phospholipid layers are found at the cartilage surfaces and are able to considerably reduce friction. Their behavior under load and varied solution conditions is important as pressures of 180 bar are encountered during daily life activities. We focus on how divalent ions, like Ca2+, affect the interaction between DPPC and hyaluronan, as other investigations have indicated that calcium ions influence their interaction. It could be shown that already low amounts of Ca2+ strongly influence the interaction of hyaluronan with DPPC. Our results suggest that the calcium ions increase the amount of adsorbed hyaluronan indicating an increased electrostatic interaction. Most importantly, we observe a modification of the DPPC phase diagram as hyaluronan absorbs to the bilayer which results in an Lα-like structure at low temperatures and a decoupling of the leaflets forming an asymmetric bilayer structure.

17.
Langmuir ; 35(38): 12439-12450, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31456406

ABSTRACT

In this study, we describe the miscibility of four azide-modified membrane phospholipids (azidolipids) with conventional phospholipids. The azidolipids bear an azide group at different positions of the sn-1 or sn-2 alkyl chain and they further differ in the type of linkage (ester vs ether) of the sn-2 alkyl chain. Investigations regarding the miscibility of the azidolipids with bilayer-forming phosphatidylcholines will evaluate lipid mixtures that are suitable for the production of stable azidolipid-doped liposomes. These vesicles then serve as model membranes for the incorporation of model peptides or proteins in the future. The miscibility of both types of phospholipids was studied by calorimetric assays, electron microscopy, small-angle X-ray scattering, infrared spectroscopy, and dynamic light scattering to provide a complete biophysical characterization of the mixed systems.


Subject(s)
Azides/chemistry , Phosphatidylcholines/chemistry , Models, Molecular , Molecular Conformation
18.
J Mater Chem B ; 7(30): 4706-4716, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31364685

ABSTRACT

Mitochondria-targeting peptides represent an emergent tool for cancer inhibition. Here supramolecular assemblies of novel amphiphilic cell-penetrating peptides for targeting cancer cell mitochondria are reported. The employed strategy aims at amplifying the apoptotic stimuli by weakening the mitochondrial VDAC1 (voltage-dependent anion channel-1)-hexokinase-II (HK-II) interaction. Peptide engineering is performed with the N-terminus of the HK-II protein, which binds to VDAC1. First, a designed positively charged segment (pKV) is anchored to the specific 15 amino acid sequence (MIASHLLAYFFTELN) to yield a cell-penetrating peptide (pHK-pKV). Second, a lipid chain (Pal) is conjugated to the N-terminus of pHK-pKV in order to enhance the intracellular delivery of the HK-II scaffold. The self-assembly properties of these two synthetic peptides are investigated by synchrotron small-angle X-ray scattering (BioSAXS) and cryogenic transmission electron (cryo-TEM) imaging, which evidence the formation of nanoassemblies of ellipsoid-like shapes. Circular dichroism (CD) spectroscopy demonstrates the induction of partial α-helical structures in the amphiphilic peptides. Confocal microscopy reveals the specific mitochondrial location of Pal-pHK-pKV assemblies in human non-small cell lung cancer (NSCLC) A549 cells. The cytotoxicity and apoptotic studies indicate the enhanced bioactivity of Pal-pHK-pKV self-assembled reservoirs, which cause massive A549 cell death with regard to pHK-pKV. Of significance, Pal-pHK-pKV treatment of non-cancerous NCM460 cells resulted in substantially lower cytotoxicity. The results demonstrate the potential of self-assembled lipo-peptide (HK-II-derived) conjugates as a promising strategy in cancer therapy.


Subject(s)
Cell-Penetrating Peptides/metabolism , Drug Delivery Systems/methods , Hexokinase/metabolism , Lung Neoplasms/drug therapy , Mitochondria/metabolism , Voltage-Dependent Anion Channel 1/metabolism , A549 Cells , Cell Death/drug effects , Cell-Penetrating Peptides/chemical synthesis , Humans , Lipids/chemistry , Lipopeptides/chemical synthesis , Lipopeptides/therapeutic use , Lung Neoplasms/pathology , Surface-Active Agents/metabolism
19.
J Phys Chem B ; 123(7): 1566-1577, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30676749

ABSTRACT

The nanofiber formation in aqueous suspension of two classes of symmetric single-chain bolaamphiphiles with different polar headgroups and a diacetylene-modified alkyl chain with a length of 32, 34, and 36 C atoms was investigated by differential scanning calorimetry, transmission electron microscopy, and small-angle neutron scattering. As observed before for other bolalipids with phosphocholine (PC) and dimethyl-phosphoethanolamine (Me2PE) headgroups, the molecules form fibers when suspended in water at low temperatures but disassemble into micellar-like aggregates upon heating. The introduction of a diacetylene group in the middle of the long chain leads to a perturbation of chain packing so that this fiber-micelle transition occurs at lower temperature compared to the other bolalipids having unmodified alkyl chains. The aim of our project was the introduction of diacetylene groups into alkyl chains to be able to polymerize the fibers at low temperature. This should enhance the fiber stability and prevent the disassembly into micellar aggregates at higher temperature. Polymerization of aggregates containing diacetylene-modified bolaamphiphiles can be easily traced by UV/vis spectroscopy as colored products are formed. We found that polymerization of bolaamphiphiles with PC headgroups leads to a breakdown of most fibers into micellelike aggregates, and only some longer fibers segments are still detectable. In contrast, the use of Me2PE headgroups improves polymerizability and length of the polymerized fibers. The compound with 36 C atoms in the chain could be polymerized at low temperatures, and the fibers remained stable at least up to a temperature of 60 °C. This shows that the perturbation of the chain packing due to the diacetylene groups in the chains can be overcome by elongation of the chains, so that thermostable fibers with a diameter of the length of the bolalipid molecule can be successfully formed.

20.
Colloids Surf B Biointerfaces ; 173: 217-225, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30296646

ABSTRACT

In this work, we used the small angle X-ray scattering (SAXS) method for controlled preparation of in situ forming sustained-release carriers for the antitumor drug bufalin (BUF), which has very poor solubility and a considerable cardiotoxicity in a non-encapsulated state. To that aim, we exploited the pseudo-ternary phase diagram of an oil(O)/surfactant(S)/water(W) system containing medium chain capric/caprylic triglycerides (MCT) and a co-surfactant blend of Macrogol (15)-hydroxystearate (Solutol HS 15) and sorbitan monooleate (Span 80). Two compositions with different oil contents (sample B and C) were selected from the microemulsion region of the phase diagram in order to study the effect of the aqueous environment on their structural behavior. A phase transition from a microemulsion (ME) to a liquid crystalline phase (LC) was established by SAXS upon progressive dilution. The drug bufalin (BUF) was encapsulated in the microemulsions with low viscosity, whereas the release of the drug occurred from the in situ generated lamellar liquid crystalline structures. The formulations were characterized by SAXS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM), rheology, drug loading and encapsulation efficiency, and in vitro release profiles. A correlation was suggested between the structures of the in situ phase-transition formed LCME formulations, the differences in their viscosities and drug release profiles. The performed cytotoxicity, cell apoptosis and pharmacokinetic experiments showed an enhanced bioavailability of BUF after encapsulation. These results suggest potential clinical applications for the obtained safe in situ phase-transition sustained-release formulations of BUF.


Subject(s)
Antineoplastic Agents/chemistry , Bufanolides/chemistry , Delayed-Action Preparations/chemistry , Liquid Crystals/chemistry , Triglycerides/chemistry , A549 Cells , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Area Under Curve , Biological Availability , Bufanolides/blood , Bufanolides/pharmacokinetics , Caprylates/chemistry , Decanoic Acids/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Compounding/methods , Drug Liberation , Emulsions , Hexoses/chemistry , Humans , Infusions, Parenteral , Kinetics , Phase Transition , Polyethylene Glycols/chemistry , Rats , Rats, Wistar , Stearic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...